The realization space is
  [1                  1   1   0   x1                  1   1   0      x1    0    1]
  [1   -x1*x2 + x2 + x3   0   1   x3                 x2   1   0      x3    1   x2]
  [1   -x1*x2 + x2 + x3   0   0   x1   -x1*x2 + x2 + x3   0   1   x1*x3   x1   x3]
in the multivariate polynomial ring in 3 variables over ZZ
within the vanishing set of the ideal
Ideal with 3 generators
avoiding the zero loci of the polynomials
RingElem[x1*x2 - x1 - x3 + 1, x1^2*x2 - x1*x2 - x1*x3 + x2, x1*x2 - x3, x1, x1*x2 - 2*x3 + 1, x2, x1 - 1, x1*x2 - x1 - x3, x3 - 1, x3, x2 - 1, x1*x2^2 - x1*x2*x3 - x1*x2 - x2^2 + x2 + x3^2, x1*x2 + x1*x3 - x1 - x3^2, x1 - x3, x1*x2 - x1*x3 + x1 - x2, x1*x2 - x3^2, x2 - x3, x1*x2 - x2 - x3, x1*x2 - x2 - x3 + 1, 2*x1*x2 - x2 - x3, x1^2*x2 - 2*x1*x2 - x1*x3 + x1 + x2 + x3, x1 - x3 + 1, 2*x1*x2 - x1 - x2 - x3, 2*x1*x2 - x1 - x2 - x3 + 1, 2*x1*x2 - x2 - 2*x3 + 1, x1^2*x2 - 2*x1*x2 - x1*x3 + x2 + 2*x3 - 1, x1^2*x2 - 2*x1*x2*x3 - x1*x2 + x2*x3 + x3^2, x1^2*x2 - 2*x1*x2*x3 + x2*x3 + x3^2 - x3, x1^2*x2 - x1*x2*x3 - 2*x1*x2 - x1*x3 + x1 + x2*x3 + x3^2, 2*x1^2*x2 - x1*x2*x3 - 2*x1*x2 - 2*x1*x3 + x1 + x2*x3 + x3^2]